Skip to main content

Tuar Aimsire Uimhriúil

Forbraíonn an rannóg Thaighde, Chomhshaoil agus Fheidhmiúcháin múnlaí thuartha aimsire uimhriúil gearr-raoin (NWP) Met Éireann. Déanann sí taighde le NWP i gcomhar le Cuibhreannas Múnla Cheantar Teoranta Ardtaifigh (HIRLAM).

Tá roinnt cuibhreannas NWP san Eoraip (féach an fhigiúr):

NWP Consortia

Tá Met Éireann mar chuid de ghrúpa HiRLAM (Múnla Cheantar Teoranta Ardtaifigh). Cuireadh tús leis an gcomhoibriú idir na deich Sheirbhís Náisiúnta Meitéareolaíochta i 1985. Chuaigh Met Éireann isteach ann i 1986. Comhoibríonn grúpaHiRLAM le Météo France agus le cuibhreannas ALADIN NWP. Cuireann Met Éireann acmhainní foirne ar fáil gach bliain i gcomhair taighde i NWP sa ghrúpa HiRLAM.

Is é an príomh-fhócas atá ag cuibhreannas HiRLAM ná múnla NWP Harmonie (HiRLAM Aladin Réigiunach Mesoscale Oibríúcháin NWP San Eoraip) a fhorbairt. Déanann sé forbairt agus taighde i:

  • gComhshamhlú Sonraí Atmaisféaracha
  • Múnla Réamhaisnéise Atmaisféarach
  • Anailís & Múnlú Dhromchla
  • Tuar Ensemble Córas
  • Dearbhú Cáilíochta

Atmospheric Data Assimilation

An accurate knowledge of the state of the atmosphere at the start of a weather forecast is a basic ingredient in numerical weather prediction (NWP). Observations of the atmosphere and their estimated errors are combined with information from a previous NWP forecast to produce an analysis of the atmosphere. This process is known as data assimilation.

Many modern NWP systems use variational techniques to estimate the most likely state of the atmosphere at a given time. The shared ALADIN-HIRLAM NWP system, Met Éireann’s operational NWP system, uses 3D-Var (three-dimensional variational data assimilation) to produce analyses of the atmosphere.

Atmospheric Forecast Model

The two main components of any atmospheric model are known as the dynamics and the physics. For the dynamics, we divide our forecast region into a grid and use mathematical algorithms to solve the equations governing the motions of the atmosphere at each grid-point. Currently, this grid has a 2.5km resolution. The physics of model takes into account the key processes which occur at scales smaller than this, and thus are not “seen” by the grid. These include solar radiation and turbulence.

Further details may be found on the HiRLAM website and in the paper by Bengtsson et al., Monthly Weather Review, May 2017.

Surface Analysis & Modelling

In addition to the dynamics and upper-air physics in an atmospheric model, the model includes surface physics and descriptions usually known collectively as a surface model. The HARMONIE-AROME forecast model, used and developed by Met Eireann staff, uses the SURFEX surface model.

SURFEX includes the physics of modelling natural land surfaces such as soil and vegetation, urban areas, lakes, seas and oceans as well as chemistry and aerosol processes, see here.

SURFEX Schema

Ensemble Prediction System

Weather forecasts are produced using computer models of the atmosphere. These models are based on observations of the atmospheric conditions at a certain moment in time and on equations which describe how the different parts of the atmosphere interact with one another. However, errors and uncertainties can creep into these forecasts from a number of different sources. Firstly, the number of available weather observations may be quite large, but certain areas still lack the spatial resolution needed to accurately capture all meteorological phenomena. Ideally, one would need an observation every couple of metres over land and sea to have a complete description of the atmospheric state at any one time. Secondly, in order to model the atmosphere’s complex physical processes, assumptions about these processes must made. Making these unavoidable assumptions can lead to errors in the computer model meaning uncertainty can creep into the forecast. Thirdly, and perhaps the most inescapable issue when it comes to forecasting, is the inherent chaotic nature of the atmosphere. Even the slightest difference in the initial set-up of the forecasting model can lead to completely different forecasts.

In order to mitigate these issues, scientists developed a forecasting tool known as an Ensemble Prediction System (EPS), the best known of which is the EPS of the European Centre for Medium-Range Weather Forecasts (or ECMWF). These systems aim to take the different sources of uncertainty and error into account by using multiple forecasts (or in other words, many different model set-ups). The result of such a system is a number of forecasts or a spread of many possible futures. This gives the forecaster a much better grasp of the uncertainty related to any meteorological situation and thus aides him/her in making a decision about future weather.

Ophelia Wind-Speed Probabilities

Quality Assurance

The accuracy of any forecast must always be verified. Model output can be compared with observations from synoptic stations, balloon profiles etc. Various metrics can be used to assess the model performance and identify specific strengths and weaknesses: for example, whether or not the model predicts the rainfall amounts accurately.

Comparative performance of the 10m wind-speed forecasts from the operational models in January 2017

You are here: