
Modelling the environmental impacts of agricultural intensification in the Boyne Catchment

- Global Warming Potential
- Acidification Potential

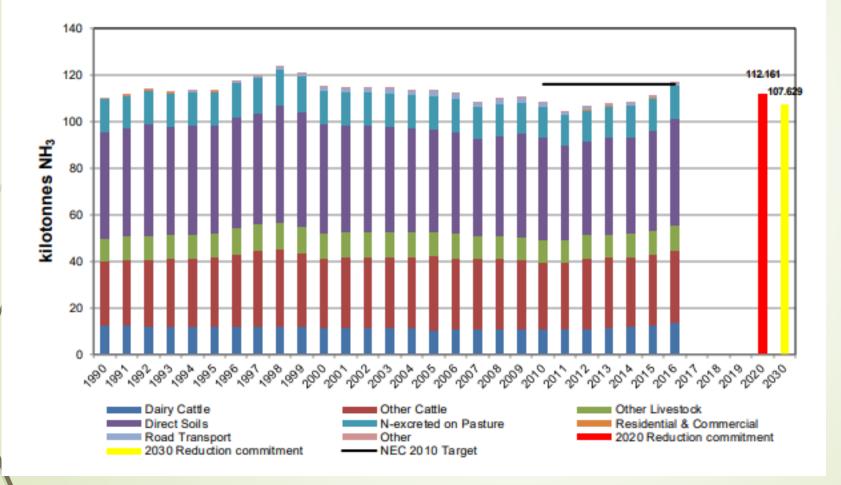
Model description

- Life Cycle Assessment
- Deterministic agri-environmental model devised by Cranfield University.
- Environmental Impacts of agricultural production.
- Processes beyond the farm gate e.g transport and processing of products are not included

Food Harvest 2020 Targets

- Dairy Sector: increase of 50% in milk output
- Beef Sector: No volume increase specified, but 20% increase in value of product
- Sheep Sector: No volume increase, 20% in value of product
- Pig Sector: 50% increase in value of output (volume of output increase unspecified)

Results for the implementation of Food Harvest 2020 in Boyne Catchment


 Global Warming Potential – increases by 7%

Acidification Potential – increases by 10%

Atmospheric Pollution associated with intensive agriculture

- Greenhouse gases: Carbon dioxide, Methane, Nitrous Oxide
- Agriculture responsible for 32% of greenhouse gas emission
- Ammonia: Ammonia (NH3) emissions are associated with acid deposition and formation of secondary particulate matter.
- Limits are set by the National Emissions Ceilings Directive
- Limit of 116 kt was breached for the first time in 2016
- Annual limit for period 2020-2029 lowered to 112kt.

History of national ammonia emissions

What is the environmental damage caused by Ammonia?

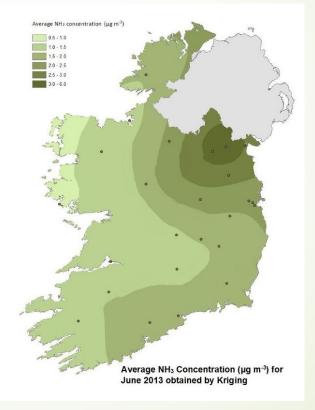
- Ammonia Deposition negatively affects biodiversity
- Certain species and habitats particularly susceptible
- Bog and peatland habitats made up of lichens and mosses
- Can be damaged by even low concentrations of ammonia

Types of deposition from the atmosphere

- Ammonia non-persistent in the atmosphere
- Dry deposition in the form of gaseous ammonia (NH3) normally

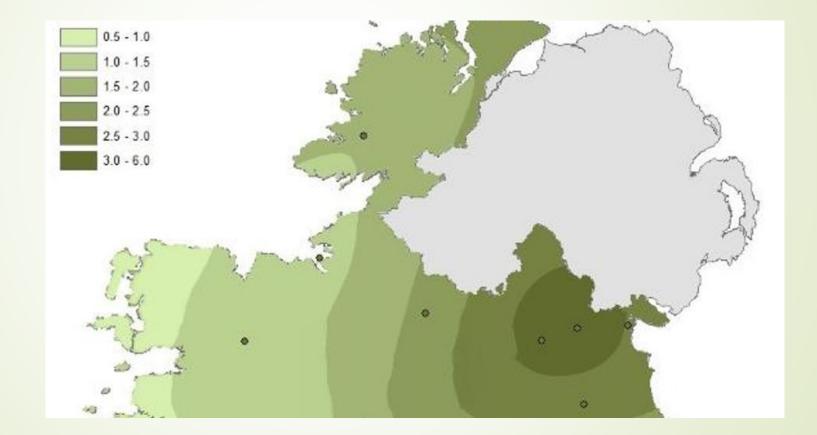
downwind from the site

- Wet deposition in the ammonium ionic form (NH4+) – usually associated with precipitation
- Deposition of other chemical forms mainly particulate matter


Special Areas of Conservation

- Some species and habitats susceptible to ammonia pollution
- Directly toxic to leaves of sensitive plants (stomata)
- Raised bogs
- Damage to lichens
- Damage to Sphagnum moss.
- Mosses and lichens are damaged by even low levels of Ammonia.
- Several SACs in the Boyne Catchment

Sources of Ammonia


- 98% of ammonia emissions attributable to agriculture
- Manure and Slurry storage and spreading
- Nitrogen Fertilizers mainly Urea and Calcium Ammonium Nitrate

Ammonia concentration – June 2013: Very high in the Boyne Catchment

Source: www.ucd/ammonia

Increasing concentration NH3 – west to east Emission rate faster than deposition rate

Boyne Catchment June 2013 – high NH3 concentration – Why?

- High intensity livestock production systems mainly cattle and pigs
- Spreading of slurry after first cut silage
- Application of synthetic Nitrogen fertilizer mostly ammonium nitrate
- Dry soil conditions
- Meteorological conditions favouring volatilisation of ammonia from fields

EU Natura 2000 sites in the Boyne Catchment

- Special Areas of Conservation (SAC) several in the catchment
- Killyconny (Cloghbally) Bog active raised bog

Killycunny Raised Bog – a Special Area of Conservation (SAC)

Ling Heather (Calluna vulgaris) damaged by ammonia deposition - bleaching

Source: www.apis.ac.uk

Healthy Ling or Common Heather

Healthy Sphagnum moss in a raised bog

Sphagnum moss – healthy and damaged

Source: Irish Times, E. McSweeney

Seasonal and diurnal effects

- Spring is the best time to spread slurry because of low level evapotranspiration (c. 1mm per day on dry days) leads to low level volatilisation of ammonia
- Summer spreading of slurry may lead to high concentration of ammonia in the atmosphere due to high level evapotranspiration (c. 3mm per day on dry days)
- Daily volatilisation of ammonia is usually highest in the afternoon particularly with drying conditions.

Interventions to reduce NH3 emission levels

After slurry spreading on grass ammonia is emitted to the atmosphere from drying leaf surfaces.

- Spreading slurry in spring rather than summer (lower evapotranspiration in spring)
- Avoidance of spreading in very dry weather
- Low emission slurry spreading systems

High ammonia emission slurry spreading Splash plate spreading method

Low ammonia emission slurry spreading: trailing shoe band spreading method

Low ammonia emission slurry spreading: Disk soil injection method

Finally....

- Food Harvest 2020 intensification programme will have an adverse impact on sensitive ecosystems in the Boyne Catchment
- Very low concentrations of ammonia in the air...even 2 parts per billion can damage sensitive species
- Every field where slurry is spread is a source for ammonia emission
- Low emission slurry spreading technology should become enforced by regulation.