CFD Simulation of Storm Surges on the Irish West Coast Using MÉRA Data

Nicole Beisiegel

School of Mathematics & Statistics University College Dublin

US-Ireland Project "Understanding Extreme Nearshore Wave Events through Studies of Coastal Boulder Transport" (UCD PI Frédéric Dias)

©@beisiegel ©@NicoleBeisiegel nicole.beisiegel@ucd.ie

Slides: available upon request.

Thanks to Frédéric Dias (UCD) Basile Chatton (École Centrale de Marseille) Jörn Behrens (U Hamburg) Seánie Griffin (UCD) Stefan Vater (U Hamburg)

Aran Islands Project	RKDG Method SF2D	Numerical Results	MÉRA Simulation
•	000	000	000000

Boulders on the Aran Islands, Co. Galway

Aran Islands Project RNI	DG Method SF2D	Numerical Results	MERA Simulation
0 00	0	000	000000

Discontinuous Galerkin Model: StormFlash2d [in short]

• Non-linear 2D Shallow Water Equation (in strong form):

 $\int_{\Omega_i} \boldsymbol{\mathsf{U}}_t \varphi_j \mathrm{d} \mathbf{x} + \int_{\Omega_i} \nabla \cdot \boldsymbol{\mathsf{F}}(\boldsymbol{\mathsf{U}}) \; \varphi_j \mathrm{d} \mathbf{x} + \int_{\partial \Omega_i} \left(\boldsymbol{\mathsf{F}}^*(\boldsymbol{\mathsf{U}}) - \boldsymbol{\mathsf{F}}(\boldsymbol{\mathsf{U}}) \right) \cdot \mathbf{n} \; \varphi_j \mathrm{d} \boldsymbol{\mathsf{S}} = \int_{\Omega_i} \boldsymbol{\mathsf{S}}(\boldsymbol{\mathsf{U}}) \varphi_j \mathrm{d} \mathbf{x}$

- Nodal DG Discretization with explicit Runge-Kutta Integration (cf (Giraldo & Warburton, 2008, Hesthaven & Warburton, 2008))
- Control Inundation and Fluxes with Slope Limiters (Kuzmin, 2010, Vater et al., 2015)
- Adaptive Mesh Refinement (Behrens et al., 2005, Behrens, 2006)

Aran Islands Project O	RKDG Method SF2D ○●●	Numerical Results	MÉRA Simulation
Slope Limiters I			

(Vater, B & Behrens, 2017)

э

Remove artificial gradients:

Slope limiters scale locally, e.g.

$$\hat{H}(x) = H_c + \alpha_e (\nabla H)_c \cdot (x - x_c), \quad 0 \le \alpha_e \le 1,$$

Aran Isla O	nds Project	RKDG Method SF2D ○●●	Numerical Results	MÉRA Simulation
CL	1.1.1.1.1.1			

Slope Limiters II

Velocity-Based Wetting and Drying Treatment

- Flux modification: $g \leftarrow 0$ (in semi-dry cells).
- 2 Limiting of fluid depth
 - Slope limit total height H = h + b.
 - Apply PP procedure following Bunya et al., 2009 to limited h
 obtained from H
 .
- 6 Limiting of momentum
 - Slope limit velocities at triangle vertices.
 - Extrapolate in-cell velocity distribution from two out of three vertex values.
 - Determine discrete in-cell velocity variation from the three distributions.
 - Compute limited momentum from velocities with smallest variation and limited fluid depth.

Aran Islands Project o	RKDG Method SF2D	Numerical Results	MÉRA Simulation

Applications of StormFlash2d

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Aran Islands Project	RKDG Method SF2D	Numerical Results	MÉRA Simulation
0	000	0	000000

Circulation in a Semi-Enclosed Basin I

In a rectangular domain $\Omega = [0, 100, 000] \times [0, D]$ with D = 50,000 a triangular bathymetry of depth $h \in \mathbb{R}$ of the form

$$b(\mathbf{x}) = \frac{2(h-h_0)}{D} \Big| y - \frac{D}{2} \Big|$$

and minimum water depth h_0 , a constant wind field τ , aligned with the *x*-axis is prescribed.

Aran Islands Project O	RKDG Method SF2D	Numerical Results ○●●	MÉRA Simulation
Circulation in a	Semi-Enclosed Ba	sin II	

Figure: Circulation in a Semi-Enclosed Basin: Momentum (magnitude) top; *x*-, and *y*-component of momentum bottom

Aran	Islands	Project
0		

A Closer Look at Source Terms

Flux Function

$$\mathbf{F}(\mathbf{U}) = \begin{bmatrix} h\mathbf{u} \\ h\mathbf{u} \otimes \mathbf{u} + \frac{g}{2}h^{2}\mathbf{I}_{2} \end{bmatrix}$$

- *h* height of water column
- u 2D velocity

Source Term

$$S(\mathbf{U}) = -\begin{bmatrix} 0\\ gh
abla b - rac{\gamma_{ au} \mathbf{ au}}{h
ho} + rac{h}{
ho}
abla rac{p_{\mathcal{A}}}{p_{\mathcal{A}}} + fh\mathbf{u} + oldsymbol{ au}_{b} \end{bmatrix}$$

- b(x) bathymetry
- au wind stress and au_b is the bottom friction
- p_A atmospheric pressure
- f Coriolis parameter

Aran Islands Project	RKDG Method SF2D	Numerical Results	MÉRA Simulation
0	000	000	00000

Aran Islands Bathymetry Data

ъ э

Aran Islands Project	RKDG Method SF2D	Numerical Results	MÉRA Simulation
0	000	000	00000

Aran Islands Bathymetry Data

Mainly: INFOMAR

- + EMODnet (.125°) and GEBCO
- + Hydromaster

(Chatton, 2018)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Aran Islands Project	RKDG Method SF2D	Numerical Results	MÉRA Simulation
0	000	000	00000

Reduce Computations \rightarrow Adaptive Mesh

 $\begin{array}{l} \mbox{Heuristic refinement indicator } \eta_{\rm ref}({\bf x}) = \nabla b({\bf x}) \\ + \mbox{ tolerance } \lambda_{\rm ref} = 0.2 \\ + \mbox{ next neighbour refinement } \end{array}$

・ロト ・四ト ・ヨト ・ヨ

Aran Islands Project O	RKDG Method SF2D	Numerical Results	MÉRA Simulation
MÉRA Data			

We took cut outs from

- 10m winds
- surface pressure
- Region lon/lat in $[-10,-9]\times[52,54]$

Convert to Netcdf using CDO

cdo -f nc setgridtype,curvilinear filein fileout.nc cdo sellonlatbox,lon_min,lon_max,lat_min,lat_max fileout.nc fileoutCUTOUT.nc

Aran Islands Project O	RKDG Method SF2D	Numerical Results	MÉRA Simulation

First Results ($t \ll 1$ hour)

Bottom friction with n = 0.01.

Aran Islands Project O	RKDG Method SF2D	Numerical Results	MÉRA Simulation

What's to come...

Summary

- Introduction DG model StormFlash2d for storm surges
- Viability of MÉRA data for use in DG flood model

Outlook

- Run DG model for longer times (several months)
- Train grid generator to use dynamic refinement indicators such as { bathymetry gradients } + { large wind speeds }
- Data analysis and post-processing