Validation of MÉRA total precipitation at Stornoway (Scotland) with a 24 GHz micro rain radar: A Preliminary Investigation

Dr. Edward Graham¹ and Dr. Chris Kidd² ¹University of the Highlands and Islands, Lews Castle, Stornoway, Scotland ²NASA/GSFC, Greenbelt, MD 20771, USA

University of the Highlands and Islands Oilthigh na Gàidhealtachd agus nan Eilean

Where is University of the Highlands and Islands (UHI)?

The Highlands and Islands of Scotland

Stornoway

Quick overview of precipitation dynamics in Scotland

Source: UK Met Office

Quick overview of precipitation dynamics in Scotland

 Sweeney and O'Hare (1992): Geographical Variation in Precipitation Related to Lamb Circulation Types. Mayes (2000): Strong anti-correlation NW/SE UK.

The North Atlantic Oscillation (NAO)

NCEP-NCAR Reanalysis (Kalnay et al. 1996)

Stornoway Monthly Precipitation v NAO <u>Pearson (r) correlation</u> <u>coefficients (1967-2017)</u>

November	0.57
December	0.72
January	0.74
February	0.75
March	0.69

Quick overview of precipitation dynamics in Scotland

Source: NASA Terra

Quick overview of precipitation dynamics in Scotland

• SNIFFER (2006), Changes in precipitation 1961 to 2005

Jan: 22% Feb: 27% Mar: 11% Apr: 14%

Annual: 7%

Graham, 2012)

 Overall UK precip increase of 5-6% from 1961-90 to 1981-2010 (same as in Ireland; Dwyer 2012, Gleeson *et al.* 2013)

The Stornoway 24Ghz micro rain radar (LE-Radar)

- Motivation: NASA Global Precipitation Mission
- Operates continuously in FM mode at 24GHz with saw tooth signal
- Vertical pulse of radiation, back-scattered (reflected) by hydrometeors (snow, hail, sleet, rain) and possibly aerosols
- Vertical resolution of 30m x 100 steps, maximum height penetration 3100m. Data averaged over time bins of 1min
- As λ (1.3cm) > drop size, then amount of back scatter ∝ to 6th power of the drop radius
- Bright band / fall velocity / Doppler shift determined from reflection & est. drop spectrum. Very high spatial/temp resolution
- Can detect low-tropospheric light drizzle which conventional PPI radar can't

The Stornoway 24Ghz micro rain radar (LE-Radar)

3 x other rain gauges within ~1.5km (SEPA, my own x 2)

Example 4-panel graphical output

Example Event 1: Low-Level Drizzle

Example Event 2: #StormFrank 29-30 Dec 2015

METEK

Example Event 2: #StormFrank 29-30 Dec 2015

Left: 00z 29 Dec 2015 / Right: 00z 30 Dec 2015

Example Event 3: Convective Boundary Layer

A Case Study: MRR, MÉRA and Met Office PPI radar: 30 June 2015

MRR total precip: 20.0mm, 20.9mm at 200m, 300m above MRR

Met Office Radar (PPI zoom): 30 June 2015

Total Met Office PPI precip (Stornoway): ~15-20mm

3 x rain gauges (within ~1.5km): 18.6mm, 18.4mm, 19.0mm

Case Study: MÉRA, 30 June 2015, 00-06z

Case Study: MÉRA, 30 June 2015, 06-12z

Tuesday 30 June 2015 06 UTC eidb t+0 VT: Tuesday 30 June 2015 09 UTC 0 m Total precipitat Tuesday 30 June 2015 09 UTC eidb t+0 VT: Tuesday 30 June 2015 12 UTC 0 m Total precipitation

Case Study: MÉRA, 30 June 2015, 12-18z

MÉRA Stornoway Point total: 6.9mm (but Isle max: 20.5mm)

Tuesday 30 June 2015 12 UTC eidb t+0 VT:Tuesday 30 June 2015 15 UTC 0 m Total p

Tuesday 30 June 2015 15 UTC eidb t+0 VT:Tuesday 30 June 2015 18 UTC 0 m Total precipitation

21

Simple 1-day quantitative summary

DATA SOURCE	PRECIP AMOUNT (24hr)
MÉRA Stornoway (single point only):	6.9mm
MÉRA (island max):	20.5mm
Micro rain radar (MRR):	20.0 to 20.9mm
Rain gauge #1:	18.4mm
Rain gauge #2:	18.6mm
Rain gauge #3:	19.0mm

Lower rain gauge totals easily accounted for by wind loss / spashing / higher altitude of MRR estimate

Possible edge effects? (as on northern boundary of MÉRA)

Summary / Conclusions

- Significant precipitation changes are afoot in NW Scotland. The Stornoway MRR with MÉRA offer new research opportunities
- Precipitation is largely stochastic mesoscale phenomenon -> longer time series needed for a comprehensive <u>climatological</u> analysis and <u>validation</u>
- Inadvertent complex choice of 30/6/2015, as front had localised embedded convective precip...-> need full MÉRA precipitation 2015-2018 please!
- Direct assimilation of very high resolution radar into models might continue to pose complications (*e.g.* PWV by GNSS, Guerova *et al.* 2004)
- Possibility of separate MÉRA geopotential paper in Weather re: Extreme thin thicknesses during recent #BeastfromtheEast

Thank you!

Twitter: @eddy_weather

Appendix

Stratus drizzle (smirs) missed by conventional Met Office PPI radar in M_{T} airflows

Quick overview of precipitation dynamics in Scotland

Precip Radar 30 Jan 2018: Source: UK Met Office

The North Atlantic Oscillation (NAO)

Hurrell (2003), NCAR; Osborn (2011)

27

30-06-2015 06 UTC

Archived by www.wetter3.de

30-06-2015 12 UTC Analysis chart valid 12 UTC TUE 30 JUN 2015 ENE? Geostrophic wind scale the in kt for 4.0 hPa intervals 1020 JO20 40 15 П 70N 60N 1025 50N 1 40N 0 X 80 25 10

Archived by www.wetter3.de

30-06-2015 18 UTC

Archived by www.wetter3.de

